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1. Introduction 
Several years ago Dean (1948) showed how to solve the linearized potential 

problem of water waves passing over a submerged circular cylinder. He dis- 
covered the remarkable fact that there is no reflexion from the cylinder; the 
transmitted waves have the same amplitude as the incident waves, but they 
suffer a phase shift in passing the cylinder. Soon after the publication of Dean’s 
paper, Ursell (1950) investigated the problem anew. He placed the solution on 
a rigorous basis, supplied a uniqueness proof, and developed a form of the 
solution with which it was reasonable to perform calculations. 

Ursell’s procedure is here applied and extended to several specific problems. 
In  particular, the first-order oscillatory force and the second-order steady force 
are calculated for the following situations: (u) the cylinder is restrained from 
moving under the effect of incident sinusoidal waves; ( b )  the cylinder is forced 
to oscillate sinusoidally in otherwise calm water; (c) the cylinder, which is 
neutrally buoyant, is allowed to respond to the first-order oscillatory forces. 
In all cases the problem is treated by two-dimensional methods. The water is 
considered to be infinitely deep. 

It is first proved that knowledge of the first-order potential supplies informa- 
tion sufficient to solve these problems. The solutions are obtained and then 
numerical results are presented, the relevant quantities being plotted as functions 
of depth, with wave-number as a parameter. Although the main purpose here is 
to calculate these forces, it is a simple matter also to extend the results of Dean 
and Ursell on the transmission of waves. It is found that in situation (c), as in 
(a) ,  there are no reflected waves. For both (a )  and (c), curves are presented for 
the phase shift of the transmitted wave. In case ( b )  it  is shown that outgoing 
waves are generated in one direction only, if the cylinder centre follows a circular 
orbit. 

2. The second-order problem 
Assume that a circular cylinder is located under a free surface, with its centre 

at x = ( ( t ) ,  y = - h + ~ ( t ) .  The instantaneous surface of the body is then specified 

X(x, y, t )  = [x - &)I2 + [y + h - q(t)I2 - a2 = 0, (1)  by 

where a is the radius of the cylinder. We also define a surface So: 

X,(x,y) = x 2 + ( y + h ) 2 - a 2  = 0 (1’) 
29-2 
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(see figure 1).  The undisturbed free surface is taken as the x-axis, and the in- 
stantaneous free surface will be specified by 

y - Y(z ,  t) = 0. 
The y-axis is positive upwards. 

I 1  
FIGURE 1. Geometry of the problem. 

We seek a velocity potential,-t @(x, y, t ) ,  which satisfies (see Stoker 1957, or 
Wehausen & Laitone 1960) 

QZZ + Quu = 0,  (3) 

@ZY,-@,+$= 0 on y =  Y(x,t), (4) 

gY+@,,+g((Dz+@g) = 0 on y = Y(x,t), ( 5 )  

@zf l z+@vf l v+Xl  = 0 on X = 0. (6) 

Equation (3) must hold for all time, t ,  and for all (x,y) in the fluid domain, i.e. 
for y < Y ( x ,  t )  and S(x,  y, t )  > 0. Equation (5) is, of course, Bernoulli’s equation, 
and (4) and (6) express the usual kinematic condition at a boundary of a perfect 
fluid. There will also be conditions a t  infinity, which will be formulated later. 

We assume that all of the dependent variables can be expressed in power 
series in terms of some small parameter, E :  

1 ( 7 )  I 
@(x, y, t )  = e@(l)(z, y, t )  + €2(D(”(X, y, t )  -t- . . . , 

I’(x,t) = EY(l)(x,t)+E2Y(2)(x,t)+ .,., 
[( t )  = €p( t )  + €“2( t )  + . . . ) 
7 ( t )  = ey”( t )  + E z p (  t )  + . . . . 

t We choose the potential so that its positive gradient is the velocity. 
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(The superscripts in parentheses are strictly indices.) It is then assumed that the 
potential function can.be continued analytically into the region y < 0,  So > 0,  
and that the value of @(x, y, t )  (and values of its derivatives) on the two boun- 
daries can be expressed in terms of Taylor series about the undisturbed positions 
of these boundaries. The following conditions are found: 

a&)+@;$) = 0 for y < 0, X, > 0 ( p  = 1,2 ,3 ,  ...); ( 8 )  
@t )+g@t l  = 0 on y = 0, ( 9 4  

@ f )  + g@g) = - 2@!$ @h\) - 2@t)  @$) + g-l@il) @$i + @ti on y = 0,  (9 b)  

r.  [vw)- Qz)(t)l = - (r . V) [<(l)(t). v@(~)I + <(l)(t). [VW - @ ) ( t ) ]  on X, = 0, 
( l o b )  

( I l a )  
( 1 l b )  

etc.; we have written 
r = xi+ (yt-h) j, 

tJp)( t )  = $@)( t )  i + T@)( t )  j , 
with i and j unit vectors along the x- and y-axes, respectively. 

If one finds a potential function, @(l)(x, y, t ) ,  which satisfies equations (9a) 
and ( I O U ) ,  then the right-hand sides of equations ( 9 b )  and ( l o b )  are known. 
Similarly, further conditions could be found on @(p)(x, y, t )  and t;(Wt), for p > 2 ,  
in each pair of which the left-hand sides would be of the form of (9a) and (loaf 
and the right-hand sides would depend only on the lower-order solutions. 

To find the force on the cylinder, we integrate the pressure, p ( x ,  y, t ) ,  around 
the boundary in the clockwise direction: 

X ( t ) - i Y ( t )  = i p(x,y,t)(dx-idy). Lo 
Let us define a system of polar co-ordinates, ( r ,  8):  

x = rsin0, y = -h+rcos8. (12a ,b)  

Every point (x, y) on X = 0 can be referred to a point on So = 0;  that is, if (x, y) 
is on S = 0, then 

x = <+asin0, y = -h+y+acos 8, 

where clearly (a  sin 8, - h + a cos 8) is a point on So = 0. These relations are 
equivalent to 

x-iy = ih+(<-iy)-iueio, 

so that, as the variable of integration follows the circle S = 0,  we have 

dx-idy = aeiod8. 

The potentials to be found will be harmonic in the lower half-plane, out,side 
a certain circle with centre at  (0, - h). In fact, it can be shown that, if < = y = 0, 
the potentials are harmonic outside x2+ ( ~ + h ) ~  = (h-Z)2, where I is the length 
of the tangent from (0,O) to the circle x 2 +  ( ~ + h ) ~  = a2. Clearly, if h-u > 0,  
then h - 2 < a. If the motions of the cylinder are sufficiently small, a similar 
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result can again be proved, and the potentials can be expanded in Taylor series 
in a finite neighbourhood about every point of S or So. The same must then be 
true of the pressure functions, so that 

p ( z 7  y, t)lsZo = p ( [ + u  sin 8, -h+ 7 +ucos8, t )  
= p ( a  sin 8, - h + a cos 8, t )  + t( t)ps(a sin 8, - h + a cos 8, t )  

+ ~ ( t )  p,(asintl, - h+ acos 8, t )  + .. . 
= [P+W131+7(t)P,+ ... l S 0 = O '  

M7e now have for the force on the cylinder 

X ( t ) - i Y ( t )  = ia eie [ p + t ( t ) p , + ~ j ( t ) p ~ +  ...]s,=od8. 1: n 

To the expansions in (7) ,  we add another: 
p ( z ,  y, t )  = ep(l)(z, y, t )  + €2p(')(z7 y, t )  + . . . , (14) 

where p(x ,  y, t )  is the hydrodynamic pressure (the difference between the actual 
pressure and the hydrostatic pressure measured from y = 0). From Bernoulli's 
equation and from (7), 

P(2, y, t )  = -p@t - $ P [ q  + @;I 
= E [  -p@p] + E 2 [ - p @ p  - -1 2 ~ (  @(1))2 - 1 z ~ ( @ k 9 2 1  + 0(e3). 

Also, ~ ~ ( 2 ,  y, t )  = E [  -@$)I + 0(e2), ~ J x ,  y, t )  = E [  -p@$] + O(6'). 
When these relations, as well as (7), are used in (13), we obtain 

x(t) - i ~ ( t )  = c[x(yt) - i ~ ( y t ) ]  + e ~ [ ~ ( z ) ( t )  - i ~ ( y t ) ]  + o(e3), 

where Xl ) ( t )  - i Y'"(t) = - iup ei8 @ j l ) l r = a  d8; (15) 

(16) 
In  the problem to be considered presently, W ( x ,  y, t )  will vary sinusoidally 

in time. From ( 9 b )  and ( l o b ) ,  it  is clear then that W2)(z,y, t )  will have two com- 
ponents: ( 1 )  a time-independent ('d.12.~) part and (2) a part that oscillates 
sinusoidally at twice the frequency of the first-order solution. If we calculate 
the time-average of X(2)( t )  - i V 2 ) ( t ) ,  using (16), we see that @(')(z, y, t )  does not 
contribute at all. Thus? 

(16') 
If  we let @(I)(,, y, t )  be the real part of a function of a complex variable, say 
f(z, t ) ,  where z = x + iy, then 

Xc2)(t) - i Y(')(t)' = - iap 

The prime denotes differentiation with respect to z. 

index will indicate complex conjugate. 

t .-t 

eie [ t f ' ( x ,  t )  f'(z, t )  + R e W i ? @ ) )  af'(z, t)/at)"],,,dO. 

( 16") 

t An over bar with a t following it will be used to indicate dime averages. A bar without 

1:. 
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3. General solution af the first-order problem 
The first-order problem has been entirely solved by Ursell and this section 

contains only a restatement of some of his results which will be needed later. 
Except for the possible presence of incident sinusoidal waves coming from 

infinity, it  is assumed that the only disturbance of the free surface far from the 
cylinder must appear as outgoing waves, The pulsating-singularity potentials 
in Appendix A, equations (56), all satisfy the free-surface condition, (ga), and 
also represent outgoing waves as x -+ 00. On r = a they form a complete set 
in terms of which the normal fluid velocity can be expanded (provided no fluid 
is generated inside the cylinder). So it is necessary only to combine them linearly 
in such a way that (loa) is satisfied. 

Let the only external hydrodynamic disturbance be an incident wave, the 
potential for which is the real part of 

exp [ -id], (17) 

where v = &/g, and A is a real constant. [The elevation of the free surface in the 
incident wave is then 

fo(z, t )  = A exp [ - i(vz + at)] = A exp [ - vh] exp [vr 

i a  A g  - -_  Re{f,(z,t))l,=, = -sin (vx+crt) .  
9 at g 

Thus the amplitude of the incident free surface wave is H, = Acrlg.1 Let [(l)(t) 
and y(l)(t) vary sinusoidally also, either in response to the wave action or as a 
result of some force applied directly to the cylinder. Specifically, let 

(18) 
Then the point on the cylinder at the angle 8 has an outward radial velocity 
(to first order) 

(18') a cos 8(yl cos at - r2 sin at) + a sin O(& cos crt - c2 sin at). 

<(l)(t) = Cl sin at + cz cos gt, y(l)(t)  = yl sin crt + rz cos at. 

Let the entire first-order potential be the real part of 
m 

f(Z, t )  = fo(z, t )  + c {%fnl(Z> t )  +P,f,Z(% t )  + YnSn,(Z, t )  + 4 J n z ( Z ,  t)). 

a Re {f (2, t))/ar 

(19) 
n= 1 

The functions fTL1, fn2, gnl, and g,, are given in Appendix A. By (lOa), 

equals the expressions (IS'). Thus the following sets of equations are obtained: 
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where Sii is the Kronecker delta: 

and the A, and Bi are known constants, given in Appendix A by equations (55). 
Thus we have four infinite sets of algebraic equations for the four infinite sets of 
coefficients, a,, p,, y,, S,. The conditions under which solutions exist were 
discussed by Ursell and will not be considered here. We shall assume throughout 
that unique solutions exist. The method for solving these equations, and, in 
particular, for uncoupling them, was also discussed by Ursell. Further mention 
of this problem will be found in Appendix B. 

If the formulae (56) of Appendix A are substituted into (19) and the order of 
summations is reversed,? (20) can be used to eliminate the double sums, and the 
complex potential becomes: 

The last sum in each bracket is a constant which does not affect any of the sub- 
sequent force calculations. The constant A does not appear explicitly now, but 
the values of a,, p,, ym and 8, all depend on it, as well as on tl, c2, ql, T ~ .  

At this point, the problem is solved, in principle. 
(a)  If the cylinder is restrained from moving, then c1 = t2 = yl = T~ = 0. 

Equations (20) yield the coefficients for f(z, t ) ,  as defined in (19). The desired 
forces are then given by ( 15) and ( 16”). 

(6)  If there are no incident waves and the cylinder is forced to oscillate with 
given amplitude, direction, and frequency, then Cl, t2, ql and q2 are known, 
and A = 0. The coefficients are obtained from solution of (20), and the force 
components are obtained from (15) and (16”). 

(c) If the cylinder is assumed neutrally buoyant, equations (20) give the 
coefficients in terms of the unknown motion parameters, El, c2, rl, T ~ ,  and then 
the motion is determined by solution of the equations of motion of a rigid body, 
with the force again given by (15). Then the coefficients are completely known 
and (16”) gives the second-order steady force. 

It is of interest to carry these solutions further. The next three sections treat 
the above cases in more detail. 

t The singularity potentials in Appendix A are expressed by Laurent series. It is 
legitimate to add sums of such series term-by-term if the resulting series converge uni- 
formly. But the potential is itself analytic and single-valued in a < Iz+ih 1 < 2h-a. SO 
it must have a Laurent expansion, which must then be (19’). 
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4. Cylinder restrained 
We assume here that the cylinder is rigidly held in place while waves pass by. 

That is, tl = t2 = q1 = qz = 0, andfo(z,t) is given by (17). From (20 )  it  is clear 
that 

Thus, from (19')) 
(21 )  Y m  = Pm7 d m  = -am* 

f(Z, f )  = flk, t )  
ct + ip,) eims + e - ~ u ~  ; (a, - ipm) ( vr)m ecime - ie+t LL __ -_ 

( va)2m i-1 d 
- -  

1 ( L ' 4 m  1 
W 

i e-iut 
d ( A ,  - ,&J (%L - %). (22)  - 
1 

The first-order force is found from ( 1 5 ) :  

X p ) ( t )  - i I'll)@) = - (27rpcr/v) [(aI sin crt +P1 cos crt) - i(pl sin crt - a1 cos crt)]. (23) 

The second-order steady force is found from ( 16") : 

SW)" i I T ) "  

In Appendix B it is shown that, if em satisfies 

and if 

then (26 a, b )  
These results can be used to simplify (23) and (24). We note again that Ho = Acr/g 
and also that H i  = vA2/g, where Ho is the amplitude of the incident surface wave. 
Then, from (23 ) ,  

Xl1)(t)-,iI'i1)(t) = - ( 2 n p g H , / ~ ) { e ~ e - ~ ~ / ( l  +~S':)g}exp{ -i(crt-$l)}, 

am = A e-vlc #,em/( 1 + S,"), p, = A ecyzL em/( 1 + 8,"). 

(27 )  

where @l = tan-lX,. (27') 
From (24), 

Numerical results from equations (27 )  and ( 2 8 )  are presented as the solid 
curves in figures 2, 3 and 4. The curve for each value of va terminates at the left 
where 2vh = 2va. An extension beyond such an abscissa would have no physical 
meaning, because the cylinder would not be completely submerged. In  fact, 
the part of each curve near the left-hand end must be interpreted with con- 
siderable care. The amplitude of the incident waves must be much less than the 
clearance between the top of the cylinder and the undisturbed free surface if 
the linearized theory is to have meaning. 
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If we take the undisturbed incident potential wave (see equation (17)) as a 
reference, we see from figure 3 that the phase of the oscillatory force lags more 
and more as the cylinder is considered to be closer and closer to the surface. An 
interpretation of this situation will be presented later when transmission of the 
wave is considered. 

150 

125 

100 

GI 
a 75 a, 
5 

50 

- 

25 

0 

2vh 

FIGURE 3. Phase lag of oscillatory force on restrained cylinder. 

It is of interest to estimate the results for va < 1. Let 

14 

2vh 

FIGURE 2. Amplitude of oscillatory force on restrained cylinder. 

This expansion is justified by Ursell. Also, let 

Ymn = { ( m + W / ( n -  1 ) W m + n .  
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Note that A,+, (and thus y,,,) is a function only of 2vh. For the forces we have 
approximately 

Xil ) ( t )  - i Yil)(t) = - (2npgHo/ip) (i*a)2 e-uh 

x {[l - y l l ( v a ) 2 + ( y 2 , , - ~ y 1 2 - 4 ~ 2 e - 4 u h )  ( v u ) ~ +  ...I 
+ 2ni e--2vh (va)2 [1+ (& - 2y1,) (va)2 + . ..I} eciUt, 

P c ~ t ) ~  = 2rpgH; e-2vh {(.a) 1,(2va) - (va)4 (yll + yZl) + . . .I, 
(31a) 
(31 b )  

0.0 1 

0.00 

FIGURE 4. Steady vertical force on restrained cylinder. 

where I,(2va) is the modified BesseI function of the first kind. In  the last equation, 
all coefficients of ( ~ a ) ~ ~  after the Bessel-function term approach zero as 2vh + 00. 

Thus the first term in brackets provides an approximation if either of the following 
conditions is satisfied: i a  < 1 or 2vh > 1. 

5. Cylinder forced to oscillate 
In this case we assume that &, t2, 7, and y2 are known (i.e. given) and that 

there are no incident waves. The complex potentialisgiven by (19) withf,,(z,t) = 0. 
The unknown coefficients in (19) are found from (20), where now A = 0. The 
first-order force components are given by 

X p ) ( t )  -iPL1)(t) = ( 2 r p ~ / i , ) { ( ~ , s i n ~ t - y y , c o s ~ t )  -i(a,coscrt-/31sin~t)} 
- np(r2a2(((, sin d + c2 cos d) - i(yl  sin ~t + v Z  cos d)}. (32) 

The second-order steady force components are given by 
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It is shown in Appendix B that, if C, and S, are defined by 

FIGURE 5 .  Oscillatory force on cylinder moving sinusoidally : 
component in phase with cylinder acceleration. 

then a,, pm, y, and Sm can be expressed in terms of en,, Cm and of tlj [Z, TI, YZ 
(see equations (62)). One obtains for the force components 

x { b C m + 1 +  (ScCrn-X,crnm) ( S e C m + 1 - S g ~ m m + J } *  (36b) 

It is interesting to note that the horizontal steady force vanishes if the cylinder 
oscillates along a straight line, no matter what the orientation of this line. 
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Figures 5 , 6  and 7 show numerical results obtained from equations ( 3 5 )  and (36 b).  
I n  particular, figure 5 .presents the component of hydrodynamic force which is 
in phase with the acceleration. If we define added mass as the negative ratio of 
this force component to the acceleration, we observe that negative added masses 

- 1.0 

- 0 1  

-0.01 
+ 
3 . 

- 0.0001 

0 2 4 6 8 10 12 14 
- 00000 1 

2vh 

FIGURE 6. Oscillatory force on cylinder moving sinusoidally : 
component in phase with cylinder velocity. 

0-5 

0-4 

0 3  

- 0 3  

- 0.4 

2vh 

FIGT~RE 7. Steady vertical force on cylinder moving sinusoidally vertically. 
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exist under a few conditions where the cylinder is very close to the free surface. 
Figure 6 presents the force component which is in phase with the velocity. The 
ratio of this force component to the velocity is the negative of the conventional 
damping coefficient. Of course, this coefficient is always positive, although its 
value is very small for certain small values of the depth. At large values of the 
depth, the damping force naturally approaches zero, since the wave-making 
capability of any oscillating body vanishes as the depth becomes very large. 
Figure 7 presents the steady vertical force on the oscillating cylinder. For any 
value of va, the force is upwards for small submergence, becomes negative for 
larger submergence, and approaches zero from below as the submergence 
becomes infinite. For very small values of va, it  can be shown analytically that 
the curves all cross zero at  approximately 2vh = 2.8. This is confirmed by the 
calculations, although it is not apparent from the figure because of the scale of 
the ordinates. 

6. Cylinder free to respond to waves 
With the incident waves given by (17)) we can write the potential as the sum 

of the potentials found in $9 4 and 5, but with &, t2, rl, q2 now unknown. The 
first-order force is the sum of the two forces found previously, but of course this 
is not true for the non-linear second-order force, Because of this last fact, it is 
just as convenient to return to the formulation of $ 3 for solving this problem. 

The complex potential is still given by ( 1  9’)) with the unknown coefficients 
to be found by solving (20). Such solutions for the coefficients are expressed in 
terms of f ,  , &, rl, r2-also still unknown, and the first-order force is then found 
in terms of these motion parameters: 

Xg)(t) - i I’P)(t) = npaa{sin ~ t [ 2 ( 8 ,  + ipl)/vu - sa(& - irl)] 
- cos at[2(y, + ia,)/va + aa(5g - ir2)]). (37) 

(See also equations (63) in Appendix B.) This complex force is set equal to the 
corresponding inertial reaction giving the equation of motion: 

npa2[“l’(t) - i p ( t ) ]  = Xkl)(t) - i YP’(t). (38) 
It is easily seen that this equation requires that 

These results can then be used in the expressions for a,, prn, ym and a,,, equations 
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The second-order steady force is found to have components 

x m t  = 0; 

463 

(42a) 

1 -0 

01 

0.0 1 

0.00 1 

o*ooo 1 

0~00001 

2vh 

FIGURE 8. Steady vertical force on a free neutrally buoyant cylinder under waves. 

We note again that vA2 = gH& where H, is the amplitude of the incident surface 
wave. For small values of va, this result can be approximated 

Again, this is a good approximation if either va is small or 2vh is large. 
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Figure 8 shows the results of calculations from equation (42 b) .  The steady force 
in this case is always upward, as in the case of the restrained cylinder under 
waves. If va is very small, we note that the steady force is much smaller than was 
the case for the restrained cylinder. However, for larger values of la, there is not 
much difference between the two cases. The approximate expressions for the 
steady forces, equations (31 b )  and (43), show that this is reasonable if 2vh is large. 

It is of some interest to consider the motion of the cylinder further. Clearly, 
from (40), 

and so the cylinder follows a circular path. In fact, 

2vh 

FIGURE 9. Phase lag of free cylinder motion. 

For small va, the amplitude can be approximatted 

The corresponding water particle (in the absence of the cylinder) would have 
an orbit given by [(l)(t) - iyW(t) = B, e-vh e- id .  

Thus the amplitude of the cylinder orbit differs from that of the water particle 
by a quantity of fourth order in va. The phase of the cylinder motion lags behind 
that of the corresponding water particle by the angle 

ykz = tan-l [n ecZvh + . . .I, 
again a quantity of fourth order in vu. The quantity @2 is plotted in figure 9. 
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Two points may be mentioned with respect to this description of the motion. 
(1) Since there is generally a steady upward force, the cylinder should accelerate 
vertically. In  such a case it is impossible to formulate a steady-motion problem 
at all, and so we have assumed that by some artificial means the cylinder is 
restrained from responding to this force. ( 2 )  In a second-order theory, there is 
a steady drift of water in the direction of wave propagation, and this could be 
expected to produce a steady force which would accelerate the cylinder hori- 
zontally. However, such a force must be of higher order than second, so that 
after it operates for an infinite time it will have produced a steady translational 
velocity of the cylinder. Thus, strictly, a description of the cylinder motion should 
include a steady second-order horizontal velocity, but its absence does not affect 
the other quantities calculated. 

7. Approximate solution 
(a )  Restrained cylinder 

If there were no free surface present, Milne-Thomson's (1960) 'circle theorem' 
could be used to find the change caused by introducing a restrained circular 
cylinder into the externally-produced potential flow. If, in the absence of the 
cylinder, the complex potential is A e-i(ve+nt), then the flow with the restrained 
cylinder present is given by the complex potential 

fl(z, t )  = A e-i(vz+ui) + A  e-vh exp {i[d + va2/(z + ih)]}, (44) 
according to the circle theorem. This potential does not satisfy the free-surface 
condition, but since the second term becomes unimportant if either a is small or 
h is large, one might expect it to yield reasonable results over an appreciable 
range of a and h. In  this section, such approximate solutions are used to calculate 
the forces and a comparison is made with the theory previously developed. 

As before, we have 

where now 
@i')lr=cz = Re { A i v  e-vh [ - exp ( v a  e-io) e-iut + exp (va eio) eiut]}. 

Then S$')(t) - i Y$]-)(t) = - 27rpga(va) A ecvh e-iut. (45) 

Similarly, x-m)t-imf = -2;rripvA2e-2"h(va)I,(Sv.r), (46) 
where I l (2va )  is a modified Bessel function of the first kind. So finally, in terms 
of the incident wave amplitude H,, we have 

These are to be compared with (31a) ,  (%a)  and ( 3 1 b ) ,  respectively. The first- 
order forces are correct to the lowest order in powers of va. The second-order 
horizontal steady force is given correctly (zero) by tho approximate solution. 
The second-order vertical-force expression is only approximately correct. These 
results are shown as broken lines on figures 2 and 4. In  this approximation, the 
phase lag, +bl, presented in figure 3 is identically zero. 

30 Fluid Mech. 16 
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(b )  Cylinder forced to oscillate 
In  $ 7  (a) ,  the mathematical expression for the effect of the cylinder is equivalent 
to a set of multipole potentials, the singularities being located within the cylinder. 
That part of the potential of 8 4 which represents singularities in the upper half- 
plane is neglected. In  other words, the effect of the free surface on the disturbance 
due to the cylinder is not considered. In the present case, where the only dis- 
turbance is due to the oscillating cylinder, the corresponding complex potential is 

This is just the classical potential for a cylinder oscillating in an infinite fluid. 
The only first-order hydrodynamic force on the cylinder is the familiar added- 
mass force, 

X p y t )  - i YP'(t) = - npa2["1'(t) - i$l)(t)]. 

The second-order force is easily found to be zero. These results are shown by the 
broken lines in figure 5. In  figures 6 and 7, this approximation yields answers 
identically equal to zero. 

(c )  Cylinder free to respond to waves 
The potential is now the sum of the potentials in the last two subsections, viz. 

f3(z, t )  = A edUz+d) + A  ecvh exp [i{d + va2/(z + ih))] - [a2 / (z  + ih)] [t(')(t) - ij( ')(t)], 

with &t) and $l)( t )  now unknown functions. To find the motion, we solve the 
equation 

npa2([(1) - i7p) = [Xl ' ) ( t )  + x p ( t ) ]  - i[ Y y ( t )  + Yk) ( t ) ]  

= - npAra(va) e-uh e-iut. 

( ( l ) ( t )  - iy(l)(t) = (Av  e-uh/g) e-ict = H 0 e-vh e-iutt. 

= - 2npAga(va) e-uh e-igt - npaz(.$) - i"(U 7 )  

(51) 

( 5 2 )  We obtain 

This is identical with the motion of the equivalent water particle in the absence 
of the cylinder. We find the second-order steady forces directly from (16"): 

90(t)t = 0,  i?rvt = 2 ~ p g H ; e - ~ " ~  (va) [I1(2va) - (va)].  ( 5 3 a , b )  

This result is to be compared with (43). Again the first terms of the exact solution 
are given correctly. This approximate value is indicated on figure 8 by the 
broken lines. 

8. Reflexion and transmission of waves 
Dean and Ursell showed that in the problem of 3 4 (cylinder restrained) there 

is no reflected wave, but that the transmitted wave has a phase shift after passing 
the cylinder. This phase shift is readily calculated from the quantities already 
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involved in the force calculations. To show this we first note that the basic 
singularity potentials of Appendix A have the following asymptotic behaviour : 

These are substituted into equation (19), together with (63). Use of the definition 
(59) then gives for the wave shape 

Ho sin (ux + vt) (x -+ +a), 

Thus the wave shows a phase lag of tan-l{2Se/(1 -St)} = where $l was 
defined in equation (27’) and plotted in figure 3. 

seems to increase monotonely as 2uh decreases (for fixed va) 
suggests an interpretation of what is happening physically. Consider the case 
ua = 4.0, where the diameter-to-wavelength ratio is about 1.3. No matter how 
shallow the submergence, essentially all of the wave energy passes above the 
cylinder, none below. Thus when a wave approaches the cylinder, the situation 
is similar to that of a wave entering shallow water. Its phase speed is reduced, 
and so when it emerges on the opposite side it exhibits a phase lag compared to 
the undisturbed wave. The smaller the value of (h - a) ,  the greater will be the 
phase lag. If we suppose further that, because of the geometrical symmetry, half 
of the lag occurs before the wave reaches x = 0 and half afterwards, then it is 
reasonable that the oscillatory forces should show a phase lag just one-half of 
the total transmission phase lag. The force in a sense depends on the average 
phase of the passing wave. 

When the value of va is quite small, the picture is not so clear-cut, for then at  
small submergence some of the wave motion occurs under the cylinder. We 
should not expect the phase lag to increase indefinitely as h - a -+ 0, but the 
argument relating force phase and transmitted-wave phase is still valid. 

Next, for the problem of $ 5  (cylinder oscillating in otherwise calm water), we 
find the amplitude of outgoing waves. In  particular, for circular orbits of the 
cylinder, we show that progressive waves are produced in only one direction. 
The procedure is exactly as before. Substitute the asymptotic expansions above 
into (19) and use equations (62), with A = 0. For the velocity potential we find 

The fact that 
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If the orbit of the cylinder centre is counter-clockwise, that is, 

then 
7 p ( t )  gyt  - 7f/2cT), 

x(( - ~ 2 + ~ l S h ) c ~ ~ ( ~ ~ x + ~ t ) - ( ( r l + 7 i ) Z S E ) s i ~ l ( ~ ~ ~ + a t ) } ,  

and waves are generated only to the left. If the orbit is clockwise, that is, 

p ( t )  = ('"(t +n/2a), 
then 

x { ( - T~ + yl S,) cos (vx - at) + ( y1 + 7j2  X,) sin (i'x - at)} - 0, x+-w 

and waves are generated only to the right. 
This unilateral production of waves can be made to appear plausible in the 

following way. If  the cylinder oscillates only vertically, then the generated waves 
are symmetrical in x. If the motion is only horizontal, the generated waves are 
anti-symmetrical in x. If now equal vertical and horizontal cylinder motions 
are combined, the relative phase of the two components of motion can be 
adjusted so that the outgoing waves on one side just cancel each other. But 
because of the different symmetry characteristics of the two waves, they will 
certainly not cancel on the other side. It is seen above that the circular cylinder 
paths provide just the appropriate phase differences for this condition. 

Finally, in the case of the free cylinder, we find that again there are no reflected 
waves. The velocitypotential in this case is a linear superpositionof the potentials 
of $8 4 and 5. A t  both infinities the potential of § 4 represents waves moving to 
the left, as already shown. The induced cylinder motion orbit is circular, and, 
from equations (40), the sense is seen to be counter-clockwise. According to the 
results above, this motion produces outgoing waves to the left only. Thus there 
are no outgoing waves to the right for the combined potential, which is equivalent 
to saying there is no reflected wave. The actual phase lag of the transmitted 
wave is again easily calcuIated. It is found to be 

where $2 was already defined as the phase lag of the motion of the cylinder and 
was shown numerically in figure 9. Comparison of curves of $, and $l shows that 
for large va there is practically no difference, but for small va the free cylinder 
causes practically no phase shift compared with that caused by the restrained 
cylinder. This is quite reasonable. A free cylinder which is small compared to 
wavelength will respond to the waves very much as if it  were simply made of 
water particles, and so it will not greatly disturb the wave motion. A large free 
cylinder on the other hand undergoes much less motion that the equivalent 
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water particles, since it responds to more or less of an average pressure disturb- 
ance, and so it affects the waves in much the same manner as the restrained 
cylinder. A similar situation was noted in the comparison of figures 8 and 4 .  

Most of this work was done while the author was employed by the David Taylor 
Model Basin, Washington, D.C. Personally the author thanks Dr J. Nicholas 
Newman for valuable discussions of the subject, Mrs Patricia M. Monacella for 
programming and carrying out the lengthy calculations on the IBM 7090 
computer, and Mr James M. Newman for checking many of the analytical results. 

Appendix A Pulsating singularity potentials 
Let 

(54b) 

The improper integrals are to be interpreted in the Cauchy principal value sense. 
Re {F(z ,  t ) }  is the potential function (see Wehausen & Laitone 1960) for a source, 
located a t  z = - ih,  which is pulsating in time with an instantaneous outflow 
equal to 27r sin at. The undisturbed free surface lies in the x-axis. Re {G(z, t ) }  is 
similarly the potential function of an oscillating vortex at z = -ih. Both 
potentials represent outgoing waves at right- and left-hand infinities. 

Since both functions are analytic in the half-plane y < h except for logarithmic 
singularities at z = - ih, the analytic portions can be expanded in Taylor series 
about z = - ih. The following expansions are obtained, valid in Iz +ih,l < 2h: 

I m 

log v(z  + ih) + 2 A,[ - i v ( z  + &)Irn  B,yt[ - i v ( z  + ih)]" cos crt, 
0 

(54a')  

I m 

0 
i log J ~ ( Z  + ih) - C iAJ - iv(z  + ih)]" sin at 

- 3 iB,[ - i t@ + ih)]" cos crt, (54b') 1: I 

If either F(z,  t )  or Q ( z ,  t )  is differentiated n times with respect to z ,  the real 
part of the resulting expression still satisfies the same boundary conditions, viz. 
the free-surface condition and the condition that only outgoing waves exist at  
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infinity. After relabelling these derivatives, multiplying by some real constants, 
and adding complex potentials in time quadrature to these, we obtain the 
following basic sets of singularity potentials: 

(vr)m e-cmO cos rt I (m+n)! ein$ m 
fn2(Z, t )  = (- - c Am+, ( v r ) n  m = ~  m! (n- l ) !  

(z + ih) has been expressed in polar co-ordinates as 

(57)  z + i h  = r eit3n-e) = i r  e-ie. 

It is of interest to note the form of A, ( f vh )  for large values of 2vh. As 2vh + CQ, 

where N is any integer larger than (m+ 1 )  (see Jahnke & Emde 1945). Thus, 
asvmvtoticallv, 

as 2vh -+ 00. 

Appendix B Solution of infinite sets of equations 

As shown by Ursell, the four sets of equations, (ZO), can be effectively un- 
coupled. Let 

(58)  ymn = ((m + n) !/(n- 1) !) Am+,; 
1 if m = n, 
0 if m + n; am, = 

where {xn} is any sequence such that this sum exists. From Appendix A, 
27r e--2vh 
(m +n)! Bm+n = ___ 
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Thus the unknown coefficients satisfy 

47 1 

Then, if the set of homogeneous equations corresponding to any of these has only 
zero solutions (which is generally the case), linear combinations of the above six 
sets of equations can be formed to give the results: 

am = Spem+y2aa(i~a)Cm; (61a) 
p, = ( - X, + A  e-vh) em - ylcra(va) 5,; (61b) 
ym = (S ,  + A  e-vh) em - &cra(va) 6; 
8, = -X,em+~lcra(va)5m. (61  4 

We then form the sums, S,, etc., by (59), which provides four linear algebraic 
,equations in S,, S,, S,, and S,, which we can solve. The results are then sub- 
stituted into the above expressions for a,, p,,, ym and a,,, yielding 

In  the special case of no cylinder motion, these results simplify greatly to 

'(see equation (21)). 



472 T. Francis Ogilvie 

The sets of equations (60 a )  and (60 b )  were truncated for solution. First they 
were each cut off with only ten unknowns and ten equations and the desired 
forces were all calculated. Then the procedure was repeated with twenty equations 
and twenty unknowns and the forces recalculated. In  cases where hla was only 
slightly greater than one, there was generally some discrepancy, and then the 
procedure was repeated again with forty equations and forty unknowns. For 
the results reported in the figures of this paper, the last two calculatioris agreed 
to at  least three significant figures. 
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